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Abstract

There are two distinct formalizations for reasoning from observations to ex-
planations, as in diagnostic tasks. The consistency based approach treats
the task as a deductive one, in which the explanation is deduced from a
background theory and a minimal set of abnormalities. In the other treat-
ment, based on abduction, the explanations are considered to be sentences
that, when added to the background theory, account for the observations.
We show that there is a close connection between these two formalizations.
Starting with a causal theory, explanations can be generated either by ab-
ductive reasoning, or by adding closure axioms and minimizing causation
within a deductive framework. The latter method is strictly stronger than
the former, but requires full knowledge of causation in a domain.
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1 Introduction

Reasoning to the best explanation is common task in many areas of Artificial
Intelligence. One of the clearest exaniples is diagnosis, in which one reasons
from observations such as patient symptoms to their underlying causes, a
disease or physiological malfunction. In the literature, there are two funda-
mentally different formalizations of this task [11; 9]. In one, the process of
finding a cause is treated as a straightforward abductive task. Representative
of this approach is the set-covering model of diagnosis [12], which assumes
two disjoint sets, d a set of disorders, and m a set of manifestations. Disor-
ders are assumed to “cause” manifestations, represented by a relation d x m.
The problem of diagnosis is recast as the problem of finding a minimal cover
of observed manifestations m' C m, that is, a minimal subset of d that causes
m'.

The competing formalization, the consistency based approach, is best
represented by Reiter’s theory of diagnosis from first principles [14]. In this
theory, the functionality of a system containing a finite number of compo-
nents is characterized by a set of first-order sentences, the background theory.
The special predicate ab(c) is used to state that the component ¢ is abnormal
or not functioning correctly. The current behavior of the system is given by
a set of observation sentences. A diagnosis of the belhavior is 2 minimal set
of abnormality assumptions that is consistent with the observations and the
background theory.

These two formalizations seem fundamentally different. The abductive
approach looks for a set of causes thal will imply the observations; the con-
sistency based approach looks for a set of abnormality assumptions that
are consistent with the observations. Nevertheless there is a connection be-
tween the two: Reiter showed how to express the set-covering model within
his framework. Recently, Console [2] and Poole [9] liave shown that either
formalization can be used in restricted settings to compute the same expla-
nations for diagnosis. In the abductive {ramework, the domain theory has
axioms that relate causes and their effects, e.g., ¢; O e would be used to
say that the eflecl e is a vesult of cause ¢;. A corresponding consistency
based theory is created by adding closure axioms stating thal the only way
to achieve an effect is by the sel of causes given (¢ D gV e V --+). The
closure axioms are local in thal thev are easily derived by looking at all the
implications that have a common head atom. The explanations conmiputed



by the two metheods are the same, as long as the domain theory contains just
horn-clause implications from causes to effects, and is acyclic.

This result applies to diagnostic tasks that require explanations, that is,
the unexpected observations must be predicted or explained from the as-
sumed malfunctions. In the literature, explanatory diagnosis is usually sig-
nalled by the presence of fault models {15; 4]. Reiter’s framework may also be
used for a weaker form of diagnosis, which could be called excusing diagnosis:
identify components that, if malfunctioning, would cancel or excuse predicted
normal behavior of the system that conflicts with the observations. Here we
look only at the case of explanatory diagnosis (and causal explanation in
general), since excusing diagnosis has no analog in the abductive framework.

The restrictions on the domain theory for the Console/Poole result are
very tight; in particular, there can be no correlation information (e.g., that
two causes are mutually exclusive, or that one effect is the negation of an-
other) or uncertainty (e.g., a cause implying a disjunction of effects). In
this paper we will examine the connection between abduction and closure
in the setting of explanation in general causal models, allowing correlations,
uncertainty, and acyclicity in the causal structure. We answer the following
questions.

o Is there a notion of explanatory closure that is appropriate for the more
general domain theory? Is there an equivalent local closure?

» s consistent explanatory closure of a general domain theory possible?

» When consistent closure is possible, does minimization of causes in the
closed theory compute the same explanations as does abduction in the
original theory?

There are botl positive and negative results. With an appropriate notion of
explanatory closure, given certain technical conditions, the consistency based
approach will compute the same explanations as the abduclive approach.
However, the utility of the former method is open to question, since local
closure will no longer suffice for explanatory closure: there seems to be no
way to close the domain theory other than by computing all explanations.
Further, the consistency hased method is strictly stronger than the abductive
one in explanalory diagnosis tasks, and the answers it produces may have
elements thal are not relevant Lo a causal explanation.



2 Simple Causal Theories

We are interested in domains in which there is a concept of cause and effect.
Much of our commeonsense view of the world can be cast into this form. Typ-
ical here is reasoning about actions or events and their results, usually for-
malized in the situation calculus or some variant [7]. Other domains include
medical diagnosis with diseases as causes, symptoms as effects; mechanical or
electrical systems with components and inputs as causes, outputs as effects;
and planning domains with plans as causes, actions as effects.

While there is a great deal of complexity and controversy in defining
causation, for this paper most of these problems can be bypassed hecause
we are interested in a formal representation of the simplest aspects of causal
consequence, given by the following definition.

DEFINITION 2.1  Let £ be a first-order language. A simple causal theory is
a tuple {C, E,Z) where

o C, a set of atomic sentences of L, is the causes.
o F, a set of sentences of L, is the effects.

* I, a set of sentences of £, is the domain theory.

The set C' contains those atomic propositions which represent the possible
causative agenls of the domain. If we are looking for an answer to the
question of “what caused e?”, then an acceptable answer is some subset of
1

Effects I are those aspects of the domain that we might observe and
aboul which we want to know the cause. Note that £ and (© need not be
disjoinl; an observed cause may require no further explanation.

The domain theory ¥ contains information about the relation hetween
causcs and effects. For example, in the situation calculus we might take ¢
to be occurrences of actions, I to be properlies of the final state, and ¥ to
hold information about the initial state and the way in which actions affect
properties of situations.

IAllowing only atoms simplifies the analysis, bul is not. restrictive, since we can inciude
equivalences such as ¢ = ¢, where ¢ is a complex sentence.



wet-lawn wet-road

1 :

sprinkler

I

warm sun  ~-- -/- --= raln

Figure 1: A sample causal theory

Here is a simple causal theory that will be used as an example in the rest
of the paper; a graphical presentation appears in Figure 1. The intended
meaning of the predicates should be obvious from their names.

Causes: rain, sun, warm, sprinkler
Effects: wet-lawn, wet-road
Domain theory: rain D wet-road, rain D wet-lawn, sun = —rain

sprinkler D wet-lawn, sun A warm O sprinkler

A notational convention: a finite set of sentences will often he taken as a
conjunction, e.g., if A and B are such sets, we wrile

AV EB for (¢;Naz---)V{byNby---)
~A for —(e;Aag---}.
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3 The Abductive Approach

Given a simple causal theory, the problem of reasoning from observations to
causes can be expressed formally using abduction. The account of logical
abduction we give here draws on ideas already present in the literature (e.g.,

[9])-

DEFINITION 3.1  Let (C, E,5) be a simple causal theory. An explanation
of a set of observations O C E is a finite set A C C such that

o A is consistent with &.
e LUAER Q.

o A is subset-minimal.

If O has a nonzero finite number of explanations, then the cautious
explanation 1s their disjunction: V; A;.

Remarks. A must be a minimal set of members of C'; by minimal is meant
there is no other explanation that is a proper subset. If these atoms consti-
tute valid causes of the observed effects, and if there is an explanation that
contains fewer causes, it should be preferred. Other than this we say noth-
ing about preferences among multiple explanations. It is obvious that often
such preferences will be required for reasoning, e.g., we may want the most
specific explanation, or the most normal {(where we partition causes into ones
that normally occur and ones that do not), or the X-est, where X is some
measure on explanations. The preference could be expressed mathematically
by a partial order on the subsets of . Since such an order will be closely
related to the domain of application, and we have no way of making any
general statements about the order, we omit it from further consideration
here.

In a given problem domain, we may be interested in the best explana-
tion, or the cautious explanation, or even any (satisficing) explanation. For
example, if we want to prediclt the possible states of the world under a series
of events, then the cauiious explanation might be most appropriate, while
tasks like plan recognition usually require the best explanation. And for some
problems there is no ordering of solutions, and any one would be acceplable.



Finally, it is possible that one explanation A will imply another A’ in a
simple causal theory. For example, sun and warm implies sprinkler in the
sample theory. More generally, let A; V A,V ---V A, be any disjunction
of explanations for O; A, is independent for O in the theory T if LU Ay }
AV AV .-V Aq.

Using the example causal theory of the previous section, there are three
explanations of O = {wet-lawn}, namely {rain}, {sprinkler}, and {sun, warm}.
The cautious explanation is rain V sprinkler V (sun A warm), which simpli-
fies in the domain theory to rain V sprinkler. The explanation sun A warm
is not independent, since it implies sprinkler. The observation sel O =
{wet-road, wet-lawn} has the single explanation {rain}, which is also its cau-
tious explanation.

8



4 The Consistency Based Approach

The consistency based approach to explanation is fundamentally different
from abduction in its formal specification. We start with a structure (C, £, II)
similar to a simple causal theory, except that the domain theory II now gives
necessary causal conditions for the occurrence of an effect; we comment on
this more below. We call this theory an inverse causal theory.

DEFINITION 4.1 Let (C, E,TI)} be an inverse causal theory, and O a subset
of E (the observation set). A denial set for O is a mazimal subset
D C C such that

IMUuOQU{=d|de D} is consistent.

The complement of the denial set with respect to C (C — D) is called a
diagnosis for 0.2

Because a denial set 1s subset-maximal, the diagnosis is a deductive conse-
quence of the domain theory, the observations, and the denial set, as proven
in [14]:

Nuou{-d|deD}+-C—-D. (1)

The difference between the consisiency based approach and abduction is
twofold. First, the form of inference is distinct: rather than abducing causes
that imply the observations 0 given the domain theory £, the consistency
approacl tries to nminimize the extent of the causation set C' by denying as
many of its elements as possible. Second, these methods encode knowledge
ol the domain differently: in the abductive framework, there are implications
from the causes to the eflects, wlile in the consistency based systems, the
most important information seems Lo be the implication {rom observations
to possible causes. TFor example, in reconstructing the set-covering model of
diagnosis, Reiter [14] uses axioms of the form:

OBSERVED(m) D PRESENT(dy) V -+ V PRESENT(d, ),

*In the original paper ([14]}, a diagnosis was defined differently and then proven to be
tlhie complement ol the denial set.

9



where m is the observed symptom and d; are diseases that cause the symp-
tom. These axioms give necessary conditions for the observation, namely,
that one of a set of diseases be present. An inverse causal theory contains
statements of this form. In fact, under certain conditions on the domain
theory, diagnoses and explanations coincide.

THEOREM 4.1 (CONSOLE, PooLE)® Let (C,E, X} be a simple causal the-
ory over a propositional language, with X a set of nonatomic definite
clauscs whose directed graph ts acyclic. Let C be « set of atoms that do
not appear in the head of any clause of ¥, and E any set of atoms. Let
1 be the Clark completion [1] of £. Then the diagnoses of (C, E,II)
are exactly the explanations of (C, E,T).

The simple causal theory of Figure 1 does not satisfy the conditions, because
it contains the equivalence sun = —rain, and sprinkleris a cause that appears
as the head of a clause. If we eliminate these anomalies, then the Clark
completion of the domain theory is:

wet-road = rain
wet-lawn = rain V sprinkler (2)
sprinkler = warm A sun

The diagnoses of wet-lawn are {rain} and {sun, warm}; the explanation
{sprinkler} is missing.

For more complicated domain theories, Clark completion does not give
the required closure over explanations. If the theory lias cycles, for example
{a D b,a" D b,b D a}, then the completion will only pick out a subset of the
explanations (in this case, b = «). If there is disjunction in the lead of a
clause, the completion is undefined.

In the nexl few sections we will extend the scope of Theorem 4.1 by
considering a more general notion of completion for a simple causal theory,
that of explanatory closures.

INeither of these authors stales the theorem in this form, although Poole [10] is close.
Tt is clear that the theorem lollows [rom their results.

10



5 Explanatory closures

Let {C, E,Z) be a simple causal theory, and suppose ¢ € E has a cautious
explanation V; A;. Now consider the statement

gD AAVAV-- VA, (3)

where we understand each A4; to be the conjunction of its elements. This
expression says that whenever g is present, it must have been caused by one
of the A;; we call this expression the explanatory closure of ¢ with respect to
the simple causal theory (C, E, I}; it is abbreviated v(g). If the explanatory
closures of all effects E exist, then the theory (C, F,II) formed by adding
the closures to I is called the closure of (C, E, E).

By forming the closure of a causal theory we can deduce the cautious
explanation from any given effect. One immediate question is whether we
should add something stronger or weaker to close the theory. If we add
a stronger closure, then we have excluded some original explanation from
consideration; e.g., if the explanatory closureis ¢ D ¢;Vaq, and we use g D
instead, then «; is the only explanation for ¢. On the other hand, suppose
instead we add g D (@) V ap V &) for some arbitrary sentence §. If we try to
derive explanations by minimizing causes, then since -(e, V «;) is consistent
with the closure, we could assume it, and derive é as the “explanation” for
¢, which is certainly not intended.

Another question is whether explanatory closures are always consistent
with the original causal theory, and if so, whether the original explanations
remain unchanged. Unfortunately, the answer to both parts of this question
15 “no.”

ExAMPLE 5.1 Let ({a1,a2,a3},{g1,92,63},Z) be a simple causal theory,
with ¥ equal to the conjunction of

a Na D g aNay D g Vs S Voo Vg
ta Nz D ga aryNaz D g Vys GVgVys
az Ny D g azNar D g1 Vg
The closures of this theory are
g1 Dy Aag

g2 D g N as
ga DuzMNay .

11



It is easy to show that the conjunction of these closures is inconsistent
with L.

The technical conditions for inconsistency are somewhat complicated, and it
takes some work to create a causal theory that will have inconsistent closures;
e.g., the example of Figure 1 can be consistently closed, but it was not origi-
nally designed with this property in mind. The necessary conditions involve
interacting effects and causes such that in the causal theory at least one of
the effects is true, and one of the causes lalse. The following proposition
states this more precisely.

PRrOPOSITION 5.1  Let {y(g:) | 0 < ¢ < n} be a set of closures for (C, E, X).
For each 1 < n, let p; be either ¢; or ~A;, where A; is any explanation
for g;. Each sentence

VPV Vp,
must be a theorem of & for these closures to be inconsistent with X.

Proof. For the closures to be inconsistent, V; =(y(¢;)) must be
a theorem of ¥. We have:

Vi~(v(g:)) = Vilgi ALEy,)
= Vilgi AN Al A-AT-- )

where I, 1s the cautious explanation for ¢, and the A;’s are
all explanations for it. The proposition follows by tautological
consequence.

We now turn to the question of how adding closures can modify explana-
tions.

EXAMPLE 5.2 Let ({ey, a5, a4}, {g1,92,93},5) be a simple causal theory,
withh ¥ equal to the conjunction of

11 was suggested by a reviewer that the sentence g) D (@ A as) V (a2 A ag A =ga) V
(@) A ag A —ga) and similar ones for the other effects be used; these closures are consislent
with the domain theory. However, as noted above, this would generate an anomalous
explanation: by asserting —a, we derive a9 A az, which is not. an explanation for g;.

12



1D ¢ —wy V ag
a1 O g2 a3 D 1V G
a3 D g

g D g3

The closures of this theory are

G O w
g2 D@
gz D az 'V ay .

If the first two closures are added to ¥, a; becomes true, az becomes
false, and the only explanation for g3 is ay.

This example shows that some causes may become true or false, thus modi-
fying the available explanations. However, new explanations, which are not
subsets of old ones, do not arise from the addition of closures.

PROPOSITION 5.2 Lel (C,E,X) be a simple causal theory, and {7(g:)} «a
set of explanatory closures with respect to it. Suppose Il = LU {v(¢:)}
is a consisient set. For an arbitrary effect g, every explanation of ¢
w.r.t. Il is a subsel of some explanation of ¢ w.r.l. X.

Proof.  Assume A is an explanation for ¢ w.r.t. II, but there
is no A’ O A such that A’ is an explanation for g w.r.t. . Us-
ing a lechuique similar to that of Proposition 5.1, the following
must he theorems of &, where each p; is either g; or —A; for any
explanation A; of ¢;:

mVmvV---vp, VaAdAVyg.
Choosing each p; to be = A;, this is a sentence which contradicts

the original assumption.

5.1 Augmented Domain Theories

Rather than trying to determine il a causal theory has a consistent closure.
we might find it useful to modily the theory so that il does. The simplest
way to do this 15 to add an escape caunse {or each effect: a new cause r; is

13



included in C for each ¢;, and the sentence r; O g¢; is added to £.° The
new causes are sufficiently isolated from the original domain theory so that
inconsistency cannot result. In effect, the closure conditions no longer force
one of the original explanations for ¢; to be true, since r; is an alternative.
Further, augmented theories do not change their original explanations at all
when closures are added.

ProrosiTioN 5.3 Let {(C',E,T) be a simple caunsal theory formed from
(C,E, %) by adding r; o C and r; D g; to T for cach g; € E; call this an
augmented causal theory. Suppose that {v(¢;)} is a set of eaplanaiory
closures with respect to the augmented theory, and let 11 = /U {~(g:)}.
Then II is consistent, and for an arbitrary cffect ¢, a subset A C C
s an explanation of g w.r.t. Il ¢f and only tf it is an explanation of ¢

w.rt N,

Proof. By Proposition 5.1, if the closure of ¥/ is to be inconsis-
tent, the following must be theorems of X/, where each p; is either
gi or -

mVpaVe--Vp,.

Because the only expressions containing r; are of the form r; D g;,
the above sentences are theorems of ¥’ only if there are corre-
sponding theorems of E with each —r; replaced by —¢;. This is
impossible, since such a set is unsatisfiable.

Assume A C C is an explanation for ¢ w.r.t. II, but not w.r.t.
Y. By reasoning similar to that in the proot of Proposition 5.3,
the following must be theorems of £’, where each p; is eitler ¢
or 1g;:

mVpV--Vp, VoAV,

By tautological consequence, these sentences nuply 4 D ¢, con-
tradicting the injtial assumption.

5Escape canses ave the same idea as the unknown faulis of [4: 15].

14



5.2 Local Closure

Cautious explanations for a proposition ¢ are defined by reference to the
entire contents of the causal theory . Is there a way of deriving these
explanations in a local manner, that is, by looking only at the sentences
of ¥ in which ¢ occurs? From Theorem 4.1, Clark completion works for
a restricted language. Buf if arbitrary correlations are allowed in ¥, then
adding cautious explanations by a local closure operation is not possible. The
simplest example showing this contains loops mn the implication structure;

e.g., let ¥ he

adg Db bDy
gDc ¢Db

(4)

Let ¢ and ¢’ be the causes. Adding the local closure ¢ D a V b is insufficient,
because it is subsumed by g D ¢ D b, so that « as a cause of g will never be
inferred. Any local closure for ¢ cannot find the connection between ¢ and b,
and thus has the chance of being incorrect.

Loops in the implication structure also cause problems for other global
closure methods such as circumscription, which is equivalent to Clark com-
pletion for the restricted language [13]. In the case of the above example,
minimizing ¢ while holding the causes fixed yields ¢ D b, which is again
stronger than the explanatory closure.



6 Closure + Minimization Implies Abduc-
tion

The closure of a causal theory contains the explanatory closure
gD A VANV VA,

of each effect g. Suppose the closed theory is consistent, and we observe g.
Then A; VAV ---V A, is true in all models of ¢ and the closed theory. If we
now try to minimize causes, that 1s, to assert - A; for as many explanations as
possible, we will eliminate possible explanations from the disjunction, until
we are left with a single one. Thus we can perform abductive reasoning in
the consistency based approach.

There is one caveat to this reasoning:® if an explanation A; is not in-
dependent, then it will not be found by closure and minimization. Suppose
there is another A, that is implied by A, and the domain theory; then A; will
be shadowed from the minimization by A, we cannot assert —A, without
concluding ~A;. Thus vsing closure and minimization will only produce the
independent explanations.

This discussion 1s made more precise with the following proposition.

THEOREM 6.1  Let (C,E,X) be a simple causal theory, and suppose that
(C, E,1II), its closure, is consistent and does not entail an effect g. Let
A be an explanation for ¢ in X, and suppose that A is consisient with
II and independent in II. Then A is a subset (nol necessarily proper)
of some diagnosis for g in Il.

Conuersely, every diagnosis for ¢ in Il is a supersel (nol necessarvily
proper) of some explanation for g in T.

Proof. Suppose A is an explanation of ¢ (in ), and lel X be the
disjunction of the rest of ¢'s explanations: AV AzV---VA,. =X
is cousistent with II, or else IT = X and so TI |= ¢, contradicting
the assumptions. Also, by assumption, II U A is consistent, and
since A is mdependent in [T, T U A U~X is consistent, and hence
sois TU{g}U-X. Let m be amodel of TU{g}+-X, and let D =

T am indebted to Bunok Paek for pointing out this problem.
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{az,a3,...a,} be a set of elements, one from each explanation of
X, that are false in m. Let ~D = (—ag A a3 A ... —a,). Now
MU {g} U~D is consistent, and because of the presence of the
closure of ¢, A 1s a consequence of it. [} can be extended to some
maximal set [’ that is a denial set for ¢, and its complement
w.r.t. C contains A.

For the converse part, let ITU {g} U~D be consistent for some
denial {maximal) set D C C. Suppose the associated diagnosis
H is not a superset of any explanation of ¢ in . Then for any
explanation A; of g, = A; is consistent with ITU {g} U~D, and so
D by maximality must contain some element of each of A;. Thus
~D D —E,, where E, is the cautious explanation for ¢g. This is
a contradiction, since g D I is a sentence of TI.

Remarks. This theorem shows the general correspondence between abduc-
tive and consistency methods. If an inverse causal theory is formed by closing
a causal theory, then, with several restrictions, consistency based diagnoses
and abductive based explanations are isomorphic to one another. Tle re-
strictions have to do with the problems encountered in adding closures to a
causal theory; given the results of the last section, it may not be possible to
do so consistently, as explanations may change, and so forth.

This 1s not to say that the two approaches are equivalent, however. The
consistency based method in general entails more than the abductive one, as
a consequence of adding the closures.

COROLLARY 6.2 Same conditions as Theorem 6.1 above. For some denial
set D, every consequence of & and A is a consequence of Il and D. On
the other hand, some consequence of D and Il may nol be consequences

of ¥ and A.
In Example 5.2, -« is a consequence of II, but not of any abductive expla-

nation for gs.

6.1 Representational Issues

The results of this paper must be interpreted in light of both the domain
information avatlable and the task at hand. We will briefly examine three
areas: temporal projection, plan recognition, and diagnosis.

17



Closure conditions may be given directly as part of the axiomatization
of a domain. This is the case with many diagnostic tasks in which complete
fault models [15] are given, characterizing the exact relation hetween the
input/output behavior of a system and its internal states. A similar analysis
can be given for the system of [8] on temporal projection, where the “internal
state” is the set of event occurrences and the axiomatization specifies exactly
what events must occur given a sequence of states, and vice versa.

On the other hand, often one has information about causal effects, to-
gether with some noncausal correlations (e.g., forbidden states) and would
like to generate explanatory diagnoses. In order to employ the consistency
based approach, the explanatory closures must be generated and added. Here
the form of the causation axioms can be exploited. If they are horn, definite
and acyclic, then local closure (Clark completion) can he used. For more
complicated theories, a technique such as circumscription may be appropri-
ate. An example here is the theory of plan recognition in [5]. The domain
theory is a hierarchical set of actions; the causes are the goals at the highest
level of the hierarchy, the so-called END events. Relations between actions
at different levels in the hierarchy are given by a first-order domain theory.
Circumscription is used to close off the axioms, producing the explanatory
closure axioms. Given a set of observed actions, minimizing over the END
events produces an explanation of the observations.”

Another good example of the derivation of closure axioms is from the
theory of temporal projection in [6]; in effect, this theory is similar to that
of [8] above, with the following differences. First, the sequence of actions
1s fully specified by the result function, hut exceplions to the actions are
allowed, in the form of miracles: these are the assumable atoms. Second,
there is a theory of causation for action types, which is used to generate the
closure conditions by circumscription. That is, the causation axioms state
what must follow if the preconditions of an action hold and the action takes
place; circumscription then generates the closure axioms. Minimization over
miracles gives the desired explanations.

The motivation behind the multiple circumseription in systems such as
[5; 6] has often been obscure. Given the results of this paper, it should be
clear that the circumscriptions are performing abduction by using closure
and minimization. Whether the circumscription corresponds to an appropri-

"This account. is of necessity somewhat simplified.
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Figure 2: A double inverter

ate closure can be tested by checking whether it produces the explanatory
closure axioms, and whether adding these axioms changes the set of explana-
tions. The examples and propositions of Section 5 should be helpful in this
regard; for example, by adding escape causes it is always possible to retain
the original causal structure. In general, if there are cycles in the implication
structure of the causal domain theory, then neither circumscription nor local
closure will work correctly in generating explanatory closures.

6.2 Logic Based Diagnosis

In logic based diagnosis methods derivative of [14], the domain theory takes
on a restricted form, with a distinguished set of abnormality predicates ab;
used to describe the expected behavior of a system. For explanatory diag-
nosis, a complete fault model is required, so that both normal and abnormal
behaviors are fully specified. For example, consider the double inverter of
Figure 2. The domain axioms are

—ah; D (in; = —out;)
ab; D (in; = out;) (:
outy, = iny .

o
—

Fach inverter can either have normal lehavior, or have a short circuit so that
input and output are the same. Let C = {ab;}. If we observe {in,,out,},
then there is one diagnosis, the empty set. To compare this to the abductive
approach, we must modily the definition of explanation slightly, allowing
—ab; as nonatomic causes.® Lel C' = CU{-c|c € C}, and define a dcfault
explanalion of O in a theory {C”, I, £} to be an explanation of O minimal
in C-atoms, restricted to just these atoms. In this example, the explanations
are {—ah,,alb,} and {ab,,ab,}; the first of these is minimal in ab-atoms,

8We could also change the vocabulary and add ok; = —ab; as a new set. of causes. and
then use Theorem 6.1. Bul this would change the diagnoses in logic based diagnosis, by
eliminating the distinction belween normal and abnormal hehavior.
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and the default explanation is the empty set, i.e., the diagnosis. In fact, we
can show in general that the default explanations correspond to diagnoses.

THEOREM 6.3 Let C'= CU{=c | c € C}, and let (C', E, L} be a simple
causal theory. Suppose Il, the explanatory closure of &, is consistent
and does not entail an effect g. Let A be a default explanation for g
in 5, and suppose that A is consistent with Il and independent in II.
Then A s a subset (not necessarily proper) of some diagnosis for g in

(C, E,TI).

Conversely, every diagnosis for g in (C, E,II) is a superset (not neces-
sartly proper) of some default explanation for g in (C', E,L).7

Proof. Consider the theory II' formed from II by adding ¢’ = —¢
for each ¢ € . The diagnoses of (C, £, 11} are just the diagnoses
of (CU{c'}, E,II') that are minimal in C, keeping only atoms in C.
Similarly, default explanations of {C”, I, T} are just explanations
of {C U {c'},E,X') that are minimal in C, keeping only atoms
in C. The result {follows from the connection hetween diagnoses
of (CU{c'}, E,II') and explanations of (C'U {c¢'}, E, &'} given by
Theorem 6.1.

In general, diagnoses assume more than is really needed for an explana-
tion: hence the necessity of subsel/superset relations in the correspondence
theorems. As an example, consider the three unconnected inverters of Figure
3. Suppose the basic axioms governing the inverters are the same as before;
there are no connections between the inverters, and the faults are coupled
by the axiom ab, D (aby V ab.). If we observe {in,,outs}, there are two
diagnoses, {ab,, aby, } and {ab,, abh.}. There is only one default explanation,
namely {ah,}. The diagnoses all give a complete state of the system, whereas
the default explanation is only the set of abnormal causes that account for
the observed behavior. The abduclive approach distinguishes between direct
causes of the observations and irrelevant causes, while the consistency hased
approach does not.

*While default explanations correspond lo diagnoses, explanations themsclves corve-
spond to the kernel diagnoses of [3], which cover the sel of possible diagnoses. We do nol.
prove Lhis resull here because of space limitations.
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Figure 3: An unconunected circuit

7 Conclusion

We have shown how to extend the correspondence between abductive and
consistency based methods to the case of causal theories that have arbitrary
first-order relations between causes and effects. The correspondence requires
that a domain theory expressing how causes produce effects be closed, that
is, contain statements that the only causes are the known ones. The ap-
propriate closure axioms are identified in this paper as explanatory closures.
The main result of the paper is that minimization of causes in the closed
theory produces almost the same explanations as abduction in the original
causal theory. The caveat is that the abductive explanations are generally
weaker than their consistency based counterparts. There are two reasons for
this: adding closures may change the available explanations; and the consis-
tency based method can conclude causes that are intuitively irrelevant to the
observed behavior.

If one is interested in the representation of domain kuowledge, then the
abductive approach offers several advantages. It does not require the as-
sumption of complete knowledge of causation, and it is not necessary to as-
sert the explanatory closures. Adding the closures can lead to inconsistency
and change the available explanations (although it will not add new ones).
The computational aspect of adding closures is also discouraging, since there
is no general local method that accomplishes the addition. Stronger global
2]
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methods such as circumscription will work only in special circumstances.
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